

I. Definition

• Define system of equations as "a set of 2 or more equations with the same variables."

II. Introduction to New Material

Ex. 1

- Graph x + y = -4 by finding the x and y intercepts
- Graph -2x + y = 2 on the same axes
- Ask students,
 - "How many times do the lines intersect?" [One!]
 - "The number of times that the lines intersect is the number of solutions this system has. How many solutions does this system have?" [One!]
 - "Where is this solution (The point where the lines intersect)?" (-2, -2)
- In the solutions column (in student notes) have students write:
 - One solution
 - Lines only intersect one time
- Ask students,
 - "What do we know about the slopes of these two lines? Are they the same or different?" [Different]
 - "What about the *y*-intercepts?" [Different]
- Add this information to the "solutions" column
 - One solution
 - o Lines only intersect one time
 - Slopes are different
 - *y*-intercepts are different
- Ex. 2 and 3 Follow the above process.

III. Think, Pair, Share

- Give students time to graph the system of equations and answer the questions about the graph independently.
- Afterwards, instruct students to compare their work with their partner's.
 - "Turn to your partner and check if your graphs looks the same. If not, see who made a mistake. Tell your partner how you answered the 3 questions and explain how you got those answers."
- Have pairs of students come up to the document camera to share graphs and answers.

IV. "Your Turns" – Independent Practice Match

- Give each student (or pair of students) an envelope of the 18 pre-cut matching pieces.
- Instructions: "Match system number with graph letter and the system's correct solution. Provide justification as to why the three cards belong together."
 - Example: "System 3 (1st column) might match up with graph F (2nd column) which could have no solution (3rd column). Then provide the explanation."

I. System of Equations:

II. A system of equations can have 3 types of solutions.

III. Graph the following system and answer the questions about its solution.

IV. Matching

System of Equations (Write the number)	Graph (Write the letter)	Solution	Justification

Solving a System by Graphing

I. System of Equations: a set of 2 or more equations with the same variables.

II. A system of equations can have 3 types of solutions.

III. Graph the following system and answer the questions about its solution.

IV. Matching

System of Equations (Write the number)	Graph (Write the letter)	Solution	Justification
1	С	No Solution	The graphs are parallel lines and never intersect, therefore they have no solution.
2	D	One Solution (1, 3)	The graphs intersect at one point, the point (1,3). Therefore, they have one solution.
3	А	Infinite Solutions	The graphs are the same line and intersect at every point. Therefore, they have ∞ solutions.
4	F	No Solution	The graphs are parallel lines and never intersect, therefore they have no solution.
5	В	One Solution (2, -1)	The graphs intersect at one point, the point (2, -1). Therefore, they have one solution.
6	Е	Infinite Solutions	The graphs are the same line and intersect at every point. Therefore, they have ∞ solutions.

